In [163]:
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import pandas as pd
import seaborn as sns
In [145]:
players_df = pd.read_csv('players.csv')
salaries_df = pd.read_csv('salaries_1985to2018.csv')
data_df = pd.merge(players_df, salaries_df, on= 'player_id')
In [147]:
data_df.head()
Out[147]:
| index_x | player_id | birthDate | birthPlace | career_AST | career_FG% | career_FG3% | career_FT% | career_G | career_PER | ... | position | shoots | weight | index_y | league | salary | season | season_end | season_start | team | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | abdelal01 | 24-Jun-68 | Cairo, Egypt | 0.3 | 50.2 | 0 | 70.1 | 256 | 13 | ... | Power Forward | Right | 240lb | 0 | NBA | 395000 | 1990-91 | 1991 | 1990 | Portland Trail Blazers |
| 1 | 0 | abdelal01 | 24-Jun-68 | Cairo, Egypt | 0.3 | 50.2 | 0 | 70.1 | 256 | 13 | ... | Power Forward | Right | 240lb | 1 | NBA | 494000 | 1991-92 | 1992 | 1991 | Portland Trail Blazers |
| 2 | 0 | abdelal01 | 24-Jun-68 | Cairo, Egypt | 0.3 | 50.2 | 0 | 70.1 | 256 | 13 | ... | Power Forward | Right | 240lb | 2 | NBA | 500000 | 1992-93 | 1993 | 1992 | Boston Celtics |
| 3 | 0 | abdelal01 | 24-Jun-68 | Cairo, Egypt | 0.3 | 50.2 | 0 | 70.1 | 256 | 13 | ... | Power Forward | Right | 240lb | 3 | NBA | 805000 | 1993-94 | 1994 | 1993 | Boston Celtics |
| 4 | 0 | abdelal01 | 24-Jun-68 | Cairo, Egypt | 0.3 | 50.2 | 0 | 70.1 | 256 | 13 | ... | Power Forward | Right | 240lb | 4 | NBA | 650000 | 1994-95 | 1995 | 1994 | Sacramento Kings |
5 rows × 32 columns
In [149]:
data_df.columns
Out[149]:
Index(['index_x', 'player_id', 'birthDate', 'birthPlace', 'career_AST',
'career_FG%', 'career_FG3%', 'career_FT%', 'career_G', 'career_PER',
'career_PTS', 'career_TRB', 'career_WS', 'career_eFG%', 'college',
'draft_pick', 'draft_round', 'draft_team', 'draft_year', 'height',
'highSchool', 'name', 'position', 'shoots', 'weight', 'index_y',
'league', 'salary', 'season', 'season_end', 'season_start', 'team'],
dtype='object')
In [151]:
data_df.isna().sum()
Out[151]:
index_x 0 player_id 0 birthDate 0 birthPlace 0 career_AST 0 career_FG% 0 career_FG3% 0 career_FT% 0 career_G 0 career_PER 0 career_PTS 0 career_TRB 0 career_WS 0 career_eFG% 0 college 1636 draft_pick 1902 draft_round 1902 draft_team 1902 draft_year 1902 height 0 highSchool 989 name 0 position 0 shoots 0 weight 0 index_y 0 league 0 salary 0 season 0 season_end 0 season_start 0 team 4 dtype: int64
In [152]:
cleaned_data_df = data_df.drop(['college', 'draft_pick', 'draft_round', 'draft_team', 'draft_year', 'highSchool'], axis = 1)
In [155]:
cleaned_data_df.isna().sum()
Out[155]:
index_x 0 player_id 0 birthDate 0 birthPlace 0 career_AST 0 career_FG% 0 career_FG3% 0 career_FT% 0 career_G 0 career_PER 0 career_PTS 0 career_TRB 0 career_WS 0 career_eFG% 0 height 0 name 0 position 0 shoots 0 weight 0 index_y 0 league 0 salary 0 season 0 season_end 0 season_start 0 team 4 dtype: int64
In [157]:
sns.scatterplot(x='career_PTS', y='salary', data=data_df)
Out[157]:
<Axes: xlabel='career_PTS', ylabel='salary'>
In [158]:
sns.scatterplot(x='career_G', y='salary', data=data_df)
Out[158]:
<Axes: xlabel='career_G', ylabel='salary'>
In [171]:
X = cleaned_data_df[['career_AST','career_TRB','career_PTS','career_G']]
y = cleaned_data_df['salary']
In [175]:
from sklearn.preprocessing import StandardScaler
scaled = StandardScaler().fit_transform(x)
X_scaled = pd.DataFrame(scaled, columns = X.columns, index = X.index)
In [177]:
X_scaled.head()
Out[177]:
| career_AST | career_TRB | career_PTS | career_G | |
|---|---|---|---|---|
| 0 | -0.998645 | -0.274361 | -0.663454 | -0.962424 |
| 1 | -0.998645 | -0.274361 | -0.663454 | -0.962424 |
| 2 | -0.998645 | -0.274361 | -0.663454 | -0.962424 |
| 3 | -0.998645 | -0.274361 | -0.663454 | -0.962424 |
| 4 | -0.998645 | -0.274361 | -0.663454 | -0.962424 |
In [161]:
y.head()
Out[161]:
0 395000 1 494000 2 500000 3 805000 4 650000 Name: salary, dtype: int64
In [ ]:
In [179]:
X_train, X_test, y_train, y_test = train_test_split(X_scaled,y, test_size = 0.3, random_state = 7)
In [181]:
lr = linear_model.LinearRegression()
lr_model = lr.fit(X_train,y_train)
lr_model.score(X_test,y_test)
Out[181]:
0.25364217200690564
In [183]:
y_pred = lr_model.predict(X_test)
In [195]:
from sklearn import metrics
mae = metrics.mean_absolute_error(y_test,y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
rmse = metrics.mean_squared_error(y_test, y_pred, squared = False)
/opt/anaconda3/lib/python3.12/site-packages/sklearn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'. warnings.warn(
In [197]:
rmse
Out[197]:
3694693.4692689087
In [125]:
reg.coef_
Out[125]:
array([119765.21651724, 376500.82994602, 255351.87623666, 379.91311393])
In [127]:
reg.score(x,y)
Out[127]:
0.2630190753541878
In [129]:
coefficients = pd.concat([pd.DataFrame(x.columns), pd.DataFrame(np.transpose(reg.coef_))], axis = 1)
In [131]:
coefficients
Out[131]:
| 0 | 0 | |
|---|---|---|
| 0 | career_AST | 119765.216517 |
| 1 | career_TRB | 376500.829946 |
| 2 | career_PTS | 255351.876237 |
| 3 | career_G | 379.913114 |
In [ ]:
from sklearn.feature_selection import SelectKBest, f_regression
fs = SelectKBest(score_func = f_regression, k = 2)
best = fs.fit_transform(X_scaled,y)
features = X_scaled.columns
best_features = features[fs.get_support()]